N-Allylpyrazole as a Ligand. II. The Preparation and Reaction of Some Palladium(II) and Platinum(II) Complexes

Takeshi Miyamoto,* Kazuo Fukushima, Taro Saito, and Yukiyoshi Sasaki Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113 (Received July 31, 1975)

New complexes of N-allylpyrazole(L) with Pd(II) and Pt(II) have been prepared and characterized; they have the general formulae of MX_2L_2 and MX_2L (X=Cl or Br). IR and ¹H NMR studies indicate that the latter complexes are cis-planar-chelate and involve both the pyrazolyl nitrogen and the olefinic group in bonding to the metal, while the former are syn- and anti-trans-planar and contain only uni-dentate pyrazole donor ligands. The treatment of the chelate complex $PtCl_2L(L=1-(2-methylallyl)-3,4,5-trimethylpyrazole)$ with donor ligands (L') such as phosphines, AsPh₃, and py displaces the coordinated olefin,forming cis-PtCl₂LL' with a retention of the cis-configuration.

Allylpyrazole (Fig. 1), which has both σ-donating nitrogen and π-accepting olefin, can be bound with metal ions in more than one way. We have already reported that the ligand forms bidentate complexes with copper(I) halide and silver nitrate; it also coordinates to metal halides of the first transition series by using only pyrazolyl nitrogen.¹⁾ By analogy with other chelate olefin complexes, ²⁻⁹⁾ the coordination chemistry of platinum(II) and palladium(II) has proved to be of interest because they form not only monodentate pyrazolyl-nitrogen complexes, but also stable olefin complexes, with the chelation of allylpyrazole through the nitrogen donor and the olefinic group.

We wish now to report the details of the preparation of palladium(II) and platinum(II) compounds and their properties, especially their spectroscopic characteristics and their substitution reactions.

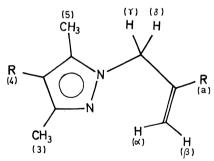


Fig. 1. N-Allylpyrazole, R_a, R₄=H or CH₃. Numbers and Greek letters represent the position of the hydrogen atoms.

Experimental

The molecular weight was determined by the Rast method. X-Ray powder diagrams were obtained by means of a Rigaku D-2F apparatus. The other physical measurements were made as has previously been described.¹⁾ The IR and NMR data are collected in Tables 3 and 4 respectively.

Synthesis of Ligands. The four ligands were prepared by the method of Finar and Utting¹⁰ in a ca. 40% yield. The names of the ligands are abbreviated thus, based on Fig. 1: admp($R_a=R_4=H$); atmp ($R_a=H$, $R_4=Me$); amdmp($R_a=Me$, $R_4=H$); amtmp($R_a=R_4=Me$).

Preparation of trans- MX_2L_2 (M=Pd or Pt; X=Cl or Br; L=substituted N-allylpyrazoles). Dipotassium tetrachlorometallate (II) (0.01 M) was dissolved in water, and then an excess of allylpyrazole (0.10 M) was stirred in. Yellow crystals were obtained after stirring at 25 °C for a day and were recrystallized from cold chloroform. The complexes were also prepared by adding allylpyrazole to MCl₂L in cold chloroform. In general, throughout the reaction, the temperature must be maintained below 25 °C. If the temperature is allowed to rise above ca. 50 °C, a mixture of MCl₂L and MCl₂L₂ is obtained. The bromo-complex, MBr₂L₂ was prepared by the metathesis of the corresponding chloro-complex with lithium bromide. All the complexes are easily soluble in chloroform or dichloromethane. The analytical data and some properties of the complexes are shown in Table 1. The trans structure of PtCl₂L₂ was checked by Kurnakov's test.¹¹⁾

Preparation of PtX_2L . Dipotassium tetrachloroplatinate (II) (0.01 M) was dissolved in water (20 ml). Into this solution a mixture of allylpyrazole (0.01 M) and concd hydrochloric acid solution (ca. 5 ml) was vigorously stirred. Then, the reaction mixture was gently heated on a water bath for about half an hour. After they had been cooled to room temperature, the precipitated crystals were filtered, washed with water, and dried in vacuo. Crude products were recrystallized from chloroform(10)-ethanol(90) (yield: 95%). In boiling ethanol, these complexes partly decompose to yield platinum-(0) metal. The purified crystals are stable to light and air. The analytical data and physical properties are summarized in Table 2. The complexes were also obtained by a displacement reaction from bis(benzonitrile)dichloroplatinum(II) (0.01 M) or bis(dimethyl sulfide)dichloroplatinum(II) (0.01 M) with allylpyrazole (0.01 M) in chloroform (yield: ca. 80%).

Preparation of PdCl₂L. The palladium complexes are prepared by procedures similar to those used for the diolefin complexes.¹²⁾ A solution of PdCl₂ (0.01 M) in concd hydrochloric acid (5 ml) is diluted with 50 ml ethanol. To this solution, the ligand (0.01 M) is added. Immediately, brown crystals are precipitated. After stirring for 20 min, they are filtered, and washed successively with water, ethanol, and diethyl ether (yield: ca. 80%). The analytical data and some properties are given in Table 2. The complexes, except for the case of L=amtmp, are not soluble enough in any solvent to give meaningful structural information in a solution.

Substitution Reaction of 1-(2-Methylallyl)-3,4,5-trimethylpyrazole-dichloroplatinum(II) with Neutral Donor Ligands. The general scheme of the reaction is summarized in Fig. 2. The analytical data and some properties of new complexes are tabulated in Table 5. When tertiary alkylphosphines such as PBuⁿ₃, PPrⁱ₃ and PCy₃ were used, all the manipulations were carried out under a nitrogen atmosphere. Some typical reactions will be described:

With PPh₃: In 50 ml of benzene, the yellow complex, PtCl₂L (2.1 g, 0.0051 M), was dispersed. When an equimolar

Table 1. Analytical data and properties of trans-MX₂L₂ type complexes

	37	La)	Color	Mp (°C) ^{b)}	% Found (Calcd)			
M	X				$\widehat{\mathbf{c}}$	Н	N	\mathbf{x}
Pt	Cl	admp	yellow	Nm	35.6 (35.7)	4.3 (4.5)	10.6 (10.4)	13.8 (13.2)
Pt	Cl	atmp	yellow	Nm	39.0 (38.2)	4·8 (5.0)	9.5 (9.9)	12.8 (12.5)
Pt	Cl	amtmp	yellow	207	40.5 (40.4)	5.5 (5.4)	$9.4 \\ (9.4)$	11.8 (11.9)
Pt	Br	amtmp	yellow	214	35.6 (35.2)	4.8 (4.7)	7.9 (8.2)	22.6 (23.4)
Pd	Cl	amtmp	orange	198	`47.9 ['] (47.5)	$\stackrel{`}{6.8}^{'}_{(6.4)}$	11.2 (11.1)	13.8 (14.0)

a) Name of ligands, abbreviated in Experimental. b) All melting points were uncorrected.

TABLE 2. ANALYTICAL DATA AND PROPERTIES OF MX₂L TYPE COMPLEXES

M	X	L	Mp (°C)a)	Color	% Found (Calcd)				
IVI				Color	$\hat{\mathbf{c}}$	H	N	\mathbf{x}	
Pt	Cl	admp	Nm	white	24.2 (23.9)	3.0 (3.0)	6.8 (7.0)	Nm	
Pt	Cl	atmp	Nm	white	26.2 (26.0)	$3.5 \\ (3.4)$	6.7 (6.7)	17.2 (17.0)	
Pt	Cl	amdmp	248	light- yellow	26.2 (26.0)	$\frac{3.1}{(3.4)}$	6.7 (6.7)	16.7 (17.0)	
Pt	Cl	amtmp ^{b)}	238	light- yellow	28.2 (28.0)	3.5 (3.8)	$6.5 \\ (6.5)$	16.2 (16.5)	
Pt	Br	amtmp	215	yellow	23.3 (23.1)	$\frac{3.1}{(3.1)}$	5.1 (5.4)	Nm	
Pd	Cl	amdmp	204	brown	33.3 (33.0)	4.2 (4.3)	8.5 (8.6)	21.4 (21.7)	
Pd	Cl	amtmp	183	brown	35.2 (35.2)	4.5 (4.7)	7.9 (8.2)	21.0 (20.8)	

a) All melting points were uncorrected. b) Molecular Weight: Found, 530; Calcd, 430.

quantity of triphenylphosphine (1.4 g, 0.0053 M) was added to the above mixture, the dispersed complex spontaneously dissolved in the solution. This light-yellow solution was then evacuated to dryness. The residue on crystallization from ethanol (20 ml)—hexane (60 ml) gave cis-PtCl₂LPPh₃ (yield: 3.2 g, 94% based on PtCl₂L). If two equivalents of PPh₃ (2.8 g) were used, snow-white crystals of cis-PtCl₂(PPh₃)₂ were precipitated from the benzene solution quantitatively.

With PCy₃: A benzene solution (100 ml) containing PCy₃ (7.0 g, 0.025 M) and PtCl₂L (4.3 g, 0.010 M) was concentrated under reduced pressure at room temperature to about half its volume. White, puffy crystals of cis-PtCl₂LPCy₃ precipitated on the addition of hexane (100 ml). They could be recrystallized from ethanol (10)-hexane (90), even in the presence of excess PCy₃ (2.8 g, 0.01 M) (yield: 5.6 g, 79%).

With $P(OPh)_3$: The addition of $P(OPh)_3$ (3.1 g, 0.010 M) to $PtCl_2L$ (2.1 g, 0.0049 M) in benzene gave a homogeneous solution, from which white crystals of the empirical formula of $Pt_2Cl_4L(P(OPh)_3)_3$ were isolated (yield: 3.0 g, 85%). (Found: C, 39.1; H, 4.4; N, 2.6%, $C_{64}H_{61}N_2O_9P_3Cl_4Pt_2$ requires: C, 38.3; H, 4.5; N, 2.5% which corresponds to a 1:1 mixture of cis-PtCl₂LP(OPh)₃ and cis-PtCl₂(P(OPh)₃)₂).

With Pyridine: A chloroform solution of pyridine (1.8 g, 0.023 M) and PtCl₂L (4.3 g, 0.010 M) was evacuated to give an oily residue. On the addition of ethanol to it, crystals of cis-PtCl₂Lpy were formed (yield: 2.5 g, 49%). The cis configuration of the product was confirmed by Kurnakov's reaction.¹¹⁾

With CO: A benzene solution in which the PtCl₂L complex had been dispersed was bubbled with CO gas. After

about 10 min, a homogeneous yellow solution was obtained. The IR spectrum of this solution showed an absorption of a C-O stretching vibration at 2060 cm⁻¹. However, on crystallization, the original comples, PtCl₂L, was recovered.

Results and Discussion

The complexing ability of allylpyrazole has been investigated with Ni(II), Pd(II), and Pt(II) ions. As for Pd(II) and Pt(II), two types of complexes, MX_2L and MX_2L_2 , have been obtained. The blue nickel complex has been prepared in the presence of a large excess of the ligand, but, unfortunately, its extreme sensitivity to moisture has prevented any accurate analysis or characterization.

Bis-allylpyrazole Complexes, MX_2L_2 . The KBr disk or Nujol mull IR spectra of the complexes closely resemble those of the free ligands. Particularly, the C=C vibration of the allyl group found at 1660 or 1640 cm⁻¹ does not differ from that of the free ligands (Table 3). This indicates that the olefinic part is free and that only the pyrazolyl nitrogen coordinates to the metal.

The trans configuration of PtX₂L₂ has been confirmed by Kurnakov's test. Attempts to isolate cis-PtX₂L₂ have been unsuccessful; probably the bulky nature of the ligands hinders the formation of the cis-isomer. In the case of palladium complexes, although it has not been

Fig. 2. Scheme.

 $N \cap \| = \text{amtmp}; III, L' = py, AsPh_3, PR_3 (R = Ph,$ Buⁿ, Prⁱ, Cy, OMe, OPh); IV ionic intermediate (not isolated); V, L'=AsPh3; trans, PR3; cis when R=Ph, OMe, OPh; trans when R=Buⁿ, Prⁱ.

definitely determined, the trans structure (Fig. 2-I) seems most likely in view of the following NMR results, similar to those for platinum complexes.

The NMR spectra of MX₂L₂ as a whole shift towards a lower magnetic field from the position of the free ligands, also indicating the apparent absence of the coordinated olefin; the coordinated olefin in metal complexes usually shows a remarkable shielding of olefinic protons.9) Both 3-Me and allyl protons, except for H_{β} , have two sets of signals as is shown in Table 4. These signals can be assigned to two possible stereoisomers, syn and anti, which have been assumed in the NMR analysis of tetrazole complexes.¹³⁾ It is likely that the low symmetry of the ligand, together with its restricted rotation about M-N bonds, generates these rotational isomers.

Mono-allylpyrazole Complexes, MX_2L . spectra of palladium complexes (Table 3) exhibit a sharp band at 1525 cm⁻¹ for L=amdmp and at 1520 cm-1 for L=amtmp. No band was observed in the vicinity of 1660 cm⁻¹, the position of the C=C vibration for the free ligand. The above sharp band probably indicates the presence of a palladium-olefin bond (a lowering from the free ligand of $\Delta v = 135$ or 140 cm^{-1}

		Free ligand	$\mathrm{PdCl_2L_2}$	$\mathrm{PdCl_2L}$	$trans$ - $PdCl_2L_2$	$PtCl_2L$
			L=admp			
$v_{\mathrm{CH_2}=}$		3080 w	 .'		$3075\mathrm{m}$	$3080\mathrm{m}$
$v_{c=c}$ +	$\delta_{ ext{C-H}}$	$1640\mathrm{m}$			1640 m	1500ms
$\delta_{\mathrm{C-H}}$		995 s			980 s	1000 s
$v_{\mathbf{M}-\mathbf{C_2}}$		920 s			930 s	_
-						515ms
			L=atmp			
$v_{\mathrm{CH_2=}}$		$3080\mathrm{m}$	3080mw		3080mw	3075 w
$v_{c=c^+}$	$\delta_{ ext{C-H}}$	1640 s	$1640\mathrm{m}$		$1640\mathrm{m}$	1500 ms
$v_{c=c}$	·	$1320\mathrm{m}$	1320 s		1320 vs	1290vs
0_0			1005 s		1005 s	1005 s
$\delta_{\mathrm{C-H}}$		985vs				
$v_{\mathrm{M-C_2}}$			940 s		940vs	
						525ms
			L=amdmp			
$v_{\mathrm{CH_2}=}$		3090mw	-	3075 w		3075 w
$v_{c=c^+}$	$\delta_{ ext{C-H}}$	1660 s		1525 s		1500 ms
$v_{\mathbf{c}=\mathbf{c}}$		$1320\mathrm{m}$		1295 s		1290 s
				1075 s		1080 ms
				1040 s		1045 s
				1005 s		
						995 s
$\delta_{\mathrm{C-H}}$		980 w		980 s		
				965ms		970ms
				955sh		
		000		930ms		925ms
		900vs		400		505
$v_{\mathbf{M} \rightarrow \mathbf{C_2}}$				480ms		505 s
			L=amtmp			
$v_{\mathrm{CH_2}=}$		3070 m	3090 w	3075 m	$3080\mathrm{m}$	3080m
$v_{\mathrm{C=C}}$ +	$\delta_{ ext{C-H}}$	1660ms	1660 m	1520 s	1660 ms	1500ms
$v_{\mathrm{C=C}}$		1320 s	1335 s	1320 s	1335 s	1300 s
				1255 s		1250 s
		1240 s	$1240\mathrm{m}$	1240 s	1245 s	1230 s
				$1040 \mathrm{ms}$		1040 s
				975 s		990br :
$\delta_{\mathrm{C-H}}$		900vs	900vs	875ms	900 vs	870ms
$v_{\mathbf{M-C_2}}$				840 ms		840ms
				490ms		510 s

Table 4. NMR data^{a)} in CDCl₃ (relative to TMS τ 10 ppm)

	3-Me	R ₄ 4-Me 4-H		5-Me	R _a a-Me a-H		H_{α}	$\mathbf{H}_{\pmb{\beta}}$	H_r H_s	
· · · · · · · · · · · · · · · · · · ·			T-11		a-IVIC	a-11				
L=admp										
Free ligand	7.94		4.35	7.91		4.20	5.12	4.98	5.	54
$PtCl_2L_2$	7.31		4.11	7.73		3.61	4.83	4.71		45
rtCl ₂ L ₂	7.24					3.70	4.77		4.	53
L=atmp										
Free ligand	8.00	8.28		8.08		4.19	5.15	4.97	5.	53
D.Cl. I	7.44	8.26		7.98		3.72	4.95	4.85	4.	57
$PtCl_2L_2$	7.36					3.83	4.90		4.	64
DJOI I	7.27	8.13		7.86		3.60	4.78	4.69	4.	45
$PdCl_2L_2$	7.20					3.68	4.74		4.	54
L=amdmp										
Free ligand	7.80		4.25	7.86	8.34		5.52	5.20	5.	53
D.CI.T	7.46		4.01	7.66	7.99		6.54	5.46	6.38	5.58
PtCl ₂ L	(4)		(14)	()	(40)		(65)	(60)	(50)	(14)
L=amtmp										
Free ligand	7.90	8.21		8.01	8.37		5.51	5.27	5.	56
D.CI. I	7.32	8.10		7.80	8.13		5.42	5.00	4.	52
$PtCl_2L_2$	7.26				8.18		5.36			58
D ₄ D _m T	7.36	8.10		7.80	8.13		5.42	5.02	4.	50
$PtBr_2L_2$	7.28				8.18		5.36		4.	56
$PdCl_2L_2$	7.26	8.12		7.88	8.06		6.32	4.95		52
FuCl ₂ L ₂	7.16				8.16		5.25			60
$PtCl_2L_2$	7.55	8.08		7.82	8.00		6.53	5.50	6.30	5.78
1 1012112	(5)	(—)		()	(40)		(66)	(62)	(51)	(14)
PtBr ₂ L	7.55	8.08		7.70	8.09		6.49	5.50	6.35	5.57
-	(5)	()		()	(44)		(64)	(63)	(54)	(15)
$PdCl_2L$	7.56	8.11		7.73	7.70		5.64	4.98	5.70	5.24

a) Coupling constants ($|J_{pt-H}|$, Hz) in parentheses.

respectively). The sharp bands of medium intensity at 480 cm⁻¹ (amdmp) and 490 cm⁻¹ (amtmp) may be assigned to $\nu(\text{Pd-C}_2)$. These bands are present in the region thought to indicate Pd-olefin stretching, as has been found for PdCl₂[tri(2-butenyl)arsine]³⁾ (425 cm⁻¹) and Pd₂Cl₄(C₂H₄)₂ (427 cm⁻¹). The ¹H NMR spectrum of PdCl₂L (L=amtmp) in CDCl₃ shows that the H_r- and H_s-protons differ in their chemical shifts ($|J_{\text{Hr-H}_{\delta}}|$ =16 Hz), while in the free ligand in PdCl₂L₂, the two protons are equivalent (Table 4). This inequality in the chemical shifts suggests that the olefinic group coordinates to palladium.

The platinum(II) complexes, PtX_2L , are generally more soluble than $PdCl_2L$ and can be well characterized by 1H NMR (Table 4). All the protons of the allyl group in PtX_2L , except for a-Me, are shifted towards higher fields. Changes in the chemical shifts similar to that of the above spectra have been reported for pnicogen-olefin chelate complexes by several workers. 9,14,15 Since a rapid, bonded=non-bonded equilibrium of the Pt-olefin bond shows a rather small spin coupling ($|J_{Pt-H_r}|=23$ Hz), 16 the large coupling constants ($|J_{Pt-H}|=60$ Hz) on the present complexes indicate that the allyl group is not liberated from platinum. The IR spectra of platinum complexes also

show a characteristic band (ca. $1500 \,\mathrm{cm^{-1}}$) of the coordinated olefin ($\Delta \nu = 140 - 160 \,\mathrm{cm^{-1}}$). The band in the range of $500 - 530 \,\mathrm{cm^{-1}}$ in the PtX₂L series may be assigned to $\nu(\mathrm{Pt-C_2})$.

The above IR and NMR results of MX₂L support Fig. 2-II as a possible structure. The molecular weight of PtCl₂(amtmp) confirms that the structure of the complex is not that of a chlorine-bridged dimer with monodentate amtmp. The measurement of powder X-ray diagrams has revealed isomorphism in both the palladium and platinum complexes; this also indirectly supports the idea that both Pd(II) and Pt(II) complexes have the same structure (Fig. 2-II).

The observation that the chemical shifts of the allyl protons of MCl₂L, where M=Pd or Pt and L=amtmp, move downfield when platinum is replaced by palladium is consistent with the lower olefin-metal interaction present in the palladium complex, such as in MX₂-(diolefin)¹⁷⁾ and olefinic tertiary phosphine complexes.⁹⁾

Substitution Reaction of PtCl₂L with Donor Molecules. The reaction scheme is outlined in Fig. 2. Only the 1-(2-methylallyl)-3,4,5-trimethylpyrazole complex, PtCl₂L, was investigated in detail.

In the reaction of an equivalent donor ligand with PtCl₂L in benzene at room temperature, stable com-

Table 5. Analytical data and properties of the isolated new complexes (L=amtmp)

THE ROBITED NEW COMPLETIES (B-amonp)										
	Color	Mp (°C)a)	% Found (Calcd)							
	Color	Mp (C)	$\widetilde{\mathbf{c}}$	Н	N					
cis-PtCl ₂ LPPh ₃ b)	white	208 (dec.)	49.2 (48.6)	4.0 (4.5)	4.1 (4.1)					
cis-PtCl ₂ LPBu ₃ ^{n b)}	white	128	40.8 (41.8)	6.1 (6.9)	4.1 (4.4)					
cis-PtCl ₂ LPr ⁴ 3 ^{b)}	white	177	39.0 (38.7)	$\frac{6.2}{(6.3)}$	$5.0 \\ (4.7)$					
cis-PtCl ₂ L ₁ PCy ₃ ^b)	white	217 (dec.)	$47.3 \\ (47.3)$	$\frac{6.7}{(7.0)}$	$\frac{3.8}{(3.9)}$					
$\mathit{cis}\mathtt{-PtCl}_{2}\mathrm{LPy}$	light- yellow	135	35.4 (35.4)	$\frac{3.9}{(4.2)}$	8.1 (8.3)					
cis-PtCl ₂ LAsPh ₃	light- yellow	174	46.0 (45.7)	$4.1 \\ (4.2)$	$\frac{3.6}{(3.8)}$					

a) All melting points were uncorrected. b) cis-Configuration of the complexes is judged from their color.

plexes with the empirical formula of PtCl₂LL' (L'=PR₃, AsPh₃ or py) have been isolated and characterized (Table 5). All the new complexes, which are easily soluble in benzene, have a sharp IR absorption at ca. 1660 cm⁻¹, indicating the existence of free olefin.

In our system, "mixed" complexes of the cis-configuration have been specifically obtained, maintaining the cis-configuration of the original chelate complex, whereas the bridge-splitting reaction of Chatt and Venanzi¹⁸) has usually been used in the laboratory to prepare mixed complexes with a trans-configuration. This selectivity of the cis-configuration can be explained by the relatively higher lability of olefin and the cisdirecting power of the pyrazolyl nitrogen to the incoming ligand.

With one more equivalent donor (L'=PPh₃, PBuⁿ₃, PPrⁱ₃ or AsPh₃), the mixed complex, PtCl₂LL', reacted to give a complex of the PtCl₂L'₂ type, displacing an equivalent allylpyrazole. The configurations of the isolated complexes depended upon the entering ligand; that is, a configuration favorable to each ligand was observed: cis to PPh₃, trans to PBuⁿ₃, PPrⁱ₃ and AsPh₃. These results can be interpreted by means of the consecutive displacement mechanism¹⁹⁻²¹⁾ via an ionic intermediate, as is shown in Fig. 2.

The equilibrium for the formation of PtCl₂LL' lies

too far to the left to permit the isolation of the complexes when L'=CO or PhNH₂, and, for steric reasons, ^{22,23}) excess PCy₃ does not displace L from cis-PtCl₂L(PCy₃).

When phosphite is used as a donor ligand, a mixture of cis-PtCl₂LP(OR)₃ and cis-PtCl₂(P(OR)₃)₂ is obtained. This is attributable to the analogous solubilities of the two compounds.

References

- 1) Part I: K. Fukushima, T. Miyamoto, and Y. Sasakis Inorg. Chim. Acta, 15, 105 (1975).
 - 2) R. S. Nyholm, Rev. Pure Appl. Chem., 27, 127 (1970).
- 3) C. A. McAuliffe and D. G. Watson, J. Chem. Soc., Dalton, 1974, 1531.
- 4) R. E. Yingst and B. E. Douglas, *Inorg. Chem.*, 3, 1177 (1964).
- 5) R. G. Dening and L. M. Venanzi, *J. Chem. Soc.*, **1963**, 3241.
- 6) M. A. Bennett, W. R. Kneen, and R. S. Nyholm, *Inorg. Chem.*, **7**, 556 (1968).
- 7) J. C. Chottard, E. Mulliez, J. P. Girault, and D. Mansuy, *Chem. Commun.*, **1974**, 780.
- 8) M. K. Cooper and D. W. Yaniuk, J. Organometal. Chem., 74, C 11 (1974).
 - 9) P. E. Garrou and G. E. Hartwell, ibid., 71, 443 (1974).
- 10) L. L. Finar and K. Utting, J. Chem. Soc., 1960, 5272.
- 11) N. S. Kurnakov, J. Russ. Phys. Chem. Soc., 25, 565 (1893).
- 12) D. Drew and J. R. Doyle, Inorg. Syn., XIII, 52 (1972).
- 13) D. A. Redfield, J. H. Nelson, R. A. Henry, D. W. Moor, and H. B. Jonassen, *J. Amer. Chem. Soc.*, **96**, 6298 (1974).
- 14) J. L. S. Curtis and G. E. Hartwell, *J. Chem. Soc. Dalton*, **1974**, 1808.
- 15) M. A. Bennett, R. N. Johnson, and I. B. Tomkins, *Inorg. Chem.*, **13**, 346 (1974).
- 16) D. I. Hall and R. S. Nyholm, Chem. Commun., 1970, 488. Idem, J. Chem. Soc., A, 1971, 1491.
- 17) F. R. Hartley, "The Chemistry of Platinum and Palladium," Applied Science Publishers, (1973), pp. 367—372.
- 18) J. Chatt and L. M. Venanzi, J. Chem. Soc., 1955, 3858.
- 19) D. G. Cooper and J. Powell, J. Amer. Chem. Soc., 95, 1102 (1973).
- 20) D. G. Cooper and J. Powell, Can. J. Chem., **51**, 1634 (1973).
- 21) J. Powell and D. G. Cooper, Chem. Commun., **1974**, 749
 - 22) C. A. Rolman, J. Amer. Chem. Soc., 92, 2956 (1970).
- 23) C. A. Tolman, W. C. Seidel, and L. W. Gosser, *ibid.*, **96**, 53 (1974).